Le forum SOS-MATH interrompra son service de modération des messages tous les dimanches de 14h00 à minuit.
Bien entendu, la consultation du forum reste toujours possible.

Exo suites

Retrouver tous les sujets résolus.

Exo suites

Messagepar François le Mar 12 Nov 2019 21:11

Bonjour je suis face à un exercice auquel je bute. Soit I l’intervalle [0 ; 1]. On considère la fonction f définie sur I par
\(f(x)= \frac{4x+1}{2x+3}\)

Je n'arrive pas à trouver la réponse aux questions après de nombreux essaies.
1) Etudier les variations de f sur I et en déduire que, pour tout x élément de I, f(x) appartient à I.

2) On considère la suite (un) définie par u0 = 0 et pour tout n de N, \(U_{n+1}=\frac{4U_{n}+1}{2U_{n}+3}\)
Montrer par récurrence que, pour tout n, un appartient à I.

3) graphique (je sais faire)

4) Établir la relation \(U_{n+1}- U_{n}=\frac{(1U_{n})(2U_{n}+1)}{2U_{n}+3}\)
En déduire le sens de variation de la suite (un).
5) Démontrer que la suite (un) est convergente.
6) La limite l de la suite (un) vérifie l = f(l) . Calculer l .

Voilà si quelqu'un pourrait m'aider c'est très importants nous allons bientôt commencer un nouveau chapitre.
Merci

François
François
 

Re: Exo suites

Messagepar SoS-Math(31) le Mer 13 Nov 2019 11:32

Bonjour François.
1) f est de la forme u/v. il faut dériver (u'v - v'u)/v² puis trouver le signe de la dérivée. Remarque le dénominateur est un carré donc positif. Le signe de la dérivée dépend que du numérateur.
2) la récurrence se fait en deux étapes :
Initialisation : vérifier que u0 appartient à I.
Hérédité : Prend en entier k tel que uk appartient à I et montre alors que uk+1 appartient aussi à I. (il faut partir de 0 < uk < 1 et arriverà (4uk+1)/(2uk +3).
SoS-Math(31)
 
Messages: 1173
Inscription: Lun 12 Oct 2015 10:33


Retourner vers Forum terminale